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Abstract
This paper presents Fan, a general-purpose syntactic metaprogram-
ming system for OCaml. Fan helps programmers create delim-
ited, domain-specific languages (DDSLs) that generalize nested
quasiquotation and can be used for a variety of metaprogramming
tasks, including: automatically deriving “boilerplate” code, code
instrumentation and inspection, and defining domain-specific lan-
guages. Fan provides a collection of composable DDSLs that sup-
port lexing, parsing, and transformation of abstract syntax.

One key contribution is the design of Fan’s abstract syntax
representation, which is defined using polymorphic variants. The
availability of intersection and union types afforded by structural
typing gives a simple, yet precise API for metaprogramming. The
syntax representation covers all of OCaml’s features, permitting
overloaded quasiquotation of all syntactic categories.

The paper explains how Fan’s implementation itself uses metapro-
gramming extensively, yielding a robust and maintainable boot-
strapping cycle.

1. Introduction
The Lisp community has recognized the power of metaprogram-
ming for decades [37]. For example, the Common Lisp Object
System [19], which supports multiple dispatch and multiple inher-
itance, was built on top of Common Lisp as a library, and support
for aspect-oriented programming [11] was similarly added without
any need to patch the compiler.

Though the syntactic abstraction provided by Lisp-like lan-
guages is powerful and flexible, much of its simplicity derives
from the uniformity of s-expression syntax and the lack of static
types. Introducing metaprogramming facilities into languages with
rich syntax is non-trivial, and bringing them to statically-typed lan-
guages such as OCaml and Haskell is even more challenging.

The OCaml community has embraced syntactic abstraction
since 1998 [12], when Camlp4 was introduced as a syntactic pre-
processor and pretty printer. The GHC community introduced Tem-
plate Haskell in 2002 [34], and added generic quasiquotation sup-
port later [22]. Both have achieved great success, and the statistics
from hackage [35] and opam [1] show that both Template Haskell
and Camlp4 are widely used in their communities.

Common applications of metaprogramming include: automati-
cally deriving instances of “boilerplate” code (maps, folds, pretty-
printers, etc.) for different datatypes, code inspection and instru-
mentation, and compile-time specialization. More generally, as we
will see below, metaprogramming can also provide good integra-
tion with domain-specific languages, which can have their own syn-
tax and semantics independent of the host language.

In Haskell, some of these “scrap-your-boilerplate” applica-
tions [20, 21] can be achieved through the use of datatype-generic
programming [32], relying on compiler support for reifying type
information. Other approaches, such as Weirich’s RepLib [44], hide
the use of Template Haskell, using metaprogramming only inter-

nally, while “template-your-boilerplate” builds a high level generic
programming interface on top of Template Haskell for efficient
code generation [6].

OCaml, in contrast, lacks native support for datatype-generic
programming, which not only makes metaprogramming as in
Camlp4 more necessary [24–26], but it also makes building a
metaprogramming system particularly hard.

Despite their success, both Template Haskell and Camlp4 are
considered to be too complex for a variety of reasons [5].1 For ex-
ample, Template Haskell’s limited quasiquotation support has led
to an alternative representation of abstract syntax [23], which is
then converted to Template Haskell’s abstract syntax, while GHC
itself keeps two separate abstract syntax representations: one for
the use in its front end, and one for Template Haskell. Converting
among several non-trivial abstract syntax representations is tedious
and error prone, and therefore does not work very well in practice.
Indeed, because not all of the syntax representations cover the com-
plete language, these existing systems are limited. Using Camlp4
incurs significant compilation-time overheads, and it too relies on a
complex abstract syntax representation, both of which make main-
tenance, particularly bootstrapping, a nightmare.

In this paper we address this problem by describing the design
and implementation of Fan2, a library that aims to provide a prac-
tical, tractable, yet powerful metaprogramming system for OCaml.
In particular, Fan supports:

• A uniform mechanism for extending OCaml with delimited,
domain-specific languages (DDSLs) (described below), and
a suite of DDSLs tailored to metaprogramming, of which
quasiquotation of OCaml source is just one instance.

• A unified abstract syntax representation implemented via OCaml’s
polymorphic variants that serves as a “common currency” for
various metaprogramming purposes, and one reflective parser
for both the OCaml front-end and metaprogramming.

• Nested quasiquotation and antiquotation for the full OCaml
language syntax. Quoted text may appear at any point in the
grammar and antiquotation is allowed almost everywhere ex-
cept keyword positions. Quasiquotation can be overloaded, and
the meta-explosion function [42] is exported as an object [29]
that can be customized by the programmer.

• Exact source locations available for both quoted and anti-
quoted syntax that are used by the type checker for generating
precise error messages to help with debugging.

• Performance that is generally an order of magnitude faster than
that of Camlp4.

• A code base that is much smaller and a bootstrapping process
that is easier to maintain compared to that of Camlp4.

1 Don Stewart has called Template Haskell “Ugly (but necessary)” [3].
2 Fan is available from: https://github.com/bobzhang/Fan/tree/icfp
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Figure 1. Fan workflow: registered DDSLs parse concrete text into
Fan’s Ast[nt], which is fed to OCaml’s standard compilation path.

2. The Fan Approach
2.1 Delimited domain-specific languages
The main syntactic abstraction mechanism provided by Fan is the
notion of a delimited, domain-specific language (DDSL). For ex-
ample, Fan’s built-in exp DDSL provides quasiquotation support
for OCaml expressions, so the concrete syntax {:exp|3+4}|} de-
notes a “quoted” piece of abstract syntax that is represented by the
Fan value (omitting location information):
‘App (‘App (‘Id (‘Lid "+"), ‘Int "3"), ‘Int "4")

More generally, the concrete syntax {:lang|...text...|}
tells Fan to parse the string “...text...”, interpreting it into

abstract syntax via a function registered with the DDSL lang. We
can therefore think of a DDSL as simply a function:

parselang : string→ Ast[nt]

Here, Ast[nt] is the Fan type of abstract syntax for the OCaml
grammar nonterminal nt. The function parselang is invoked by
the Fan front end whenever it encounters the DDSL syntax, and
the resulting Ast[nt] is spliced into the parse results, as shown in
Figure 1. This process is called compile-time expansion.

Fan provides abstract syntax representations for all of OCaml’s
nonterminals, but the most commonly used include exp (expres-
sions), pat (patterns), stru (toplevel structures), and ep (expressions
that are patterns). The design of the abstract syntax Ast[nt] plays a
crucial role in Fan, and we will explain it in detail in Section 4.

One common use case for Fan DDSLs is to embed an arbitrary
object language into OCaml. In this case, the parse function could
be factored into two steps:

parseobject : string→ OAst

compile : OAst→ Ast[nt]

Here OAst is some OCaml datatype (typically an algebraic
datatype) that represents the parse trees of the object language.
The compile function translates object-language constructs into
OCaml. The parser and compiler could be written using any OCaml
code, but, as we shall see, the Fan namespaces Fan.Lang and
Fan.Lang.Lex provide lex and parser DDSLs that aid in parsing.

Fan also provides quotation DDSLs to aid in compilation and
translation tasks. For example, when implementing compile, it is
useful to be able to pattern match against the object language’s
abstract syntax using notation for its concrete syntax [22]. This is
provided by a quotation DDSL implemented using the function:

lift : OAst→ Ast[ep]
Although lift’s type looks similar to compile’s, the abstract
syntax it returns is itself a representation of an OAst parse tree as a
value of type Ast[ep], i.e. it is a quotation, not an interpretation.3

Things become even more interesting when the object language
and the meta language are the same. That is, when OAst is Ast[nt].
In this case, the lift function provides quotation of OCaml code,
and the result allows for manipulation of quoted OCaml syntax
directly, which enables type- and syntax-directed generation of
OCaml programs. Indeed, much of Fan’s power derives from a suite
of DDSLs (in the Fan.Lang.Meta and Fan.Lang.Meta.N names-
paces) that provide just such quasiquotation support; exp is one
such DDSL. Moreover, the DDSL fans implements type-directed
derivation of various utility functions such as visitor-pattern traver-
sals and pretty-printers—it can be used to derive lift functions
automatically.

Fan itself is implemented using its own DDSLs—this nontrivial
bootstrapping support, though initially difficult to implement, leads
to a robust maintenance strategy that we discussion in Section 6.

2.2 Examples
In this section, we show several examples of DDSLs built on top
of Fan, and then turn to the DDSLs for quasiquotation support that
are provided in Fan by default.

Embedding a subset of Prolog Our first example is a deep em-
bedding of a foreign language—Prolog—into OCaml in such a way
that OCaml code can invoke Prolog programs. Listing 1, which
solves the N-queens problem, shows what the resulting DDSL
looks like to the programmer.

Listing 1. Deep embedding of Prolog code.
1 {:prolog|
2 %:nqueens(+N,?Board)
3 nqueens(N,Board) :-
4 range(1,N,L), permutation(L,Board),
5 safe(Board).
6

7 %:range(+Start,+Stop,?Result)
8 range(M,N,[M|L]) :-
9 M < N, M1 is M+1, range(M1,N,L).

10 range(N,N,[N]).
11

12 %:permutation(+List,?Result)
13 permutation([],[]).
14 permutation([A|M],N) :-
15 permutation(M,N1), insert(A,N1,N).
16

17 %:insert(+Element,+List,?Result)
18 %:insert(?Element,+List,+Result)
19 %:insert(+Element,?List,+Result)
20 insert(A,L,[A|L]).
21 insert(A,[B|L],[B|L1]) :- insert(A,L,L1).

3 We explain why only ep is needed in lift instead of both exp and pat in
section 5.
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22

23 % :safe(+Board)
24 safe([_]).
25 safe([Q|Qs]) :- nodiag(Q,Qs,1), safe(Qs).
26

27 %:nodiag(+Queen,+Board,+Dist)
28 nodiag(_,[],_).
29 nodiag(Q1,[Q2|Qs],D) :-
30 noattack(Q1,Q2,D), D1 is D+1,
31 nodiag(Q1,Qs,D1).
32

33 %:noattack(+Queen1,+Queen2,+Dist)
34 noattack(Q1,Q2,D) :-
35 Q2-Q1 =\= D, Q1-Q2 =\= D.
36 |} ;;
37 let _ = nqueens
38 (fun b -> print_endline (string_of_plval b))
39 (Int 10);;

This example shows how the DDSL mixes OCaml syntax with
Prolog syntax delimited by {:prolog| and |} brackets. The
DDSL exposes Prolog queries as OCaml functions. In this case,
when viewed as an OCaml function, nqueens takes an output
continuation, corresponding to the ?Board parameter, and provides
the input +N as a wrapped OCaml value.

This example shows that there is an implicit contract between
a DDSL and its host context—in this case, the interpretation of
Prolog predicates as OCaml functions (and the order and types of
the function arguments) is a part of the DDSL interface, and Fan
does not itself attempt to verify that the interface is used correctly.
In practice though, IDE support, which allows the programmer
to locally expand (and collapse) the DDSL code statically during
development, in conjunction with OCaml’s type checker, which can
be used to inspect the types of identifiers such as nqueens, allows
the programmer to understand the contract between the DDSL and
the host code.

The implementation strategy for the Prolog DDSL, which sup-
ports backtracking and unification, follows the first approach de-
scribed above: a standard OCaml datatype is defined and then Fan’s
parser DDSL is used to write the Prolog parser (though any imple-
mentation could be used). The compilation strategy uses metapro-
gramming to translate (a representation of) each predicate to (a
representation of) an OCaml function, following Robinson’s tech-
niques [31].

Unlike a Prolog interpreter, this prolog DDSL compiles the Pro-
log source via translation to OCaml and the OCaml backend. The
resulting implementation yields performance that is significantly
better than an interpreter, and that compares favorably with the
SWI-Prolog compiler, a mainstream Prolog implementation ([46]
(at least for this subset of the language).

Embedding a parser generator Our second example shows how
Fan’s parser DDSL is used to implement the front-end of the subset
of Prolog mentioned above, as shown in Listing 2.

Listing 2. Parsing a subset of Prolog using the parser DDSL.
1 #import Fan.Lang;;
2 let g =
3 Gram.create_lexer
4 ~annot:"prolog"
5 ~keywords:["\\="; "is"; "=:=";
6 "=\\="; "<"; ...]
7 ();;
8 {:create|(g:Gram.t) prog rule_or_mask rule
9 body args term mask var arg_mask|};;

10 {:extend|
11 body:
12 [ ":-"; L1 term SEP ","{r} -> r ]
13 (*.... other non-terminals *)

14 term:
15 {[ S{x}; "="; S{y} -> ... (* action *)
16 | S{x}; "\\="; S{y} -> ...
17 | ... ]
18 (* ... other levels *)
19 "simple" NA (* non-associative *)
20 [ ‘Uid x -> Var (x,_loc)
21 | ... ] } |};;

Line 1 imports the namespace of Fan.Lang, which provides two
DDSLs for working with parsers, create and extend. Lines 2
through 7 create a grammar g and specify the keywords that are
used to customize the behavior of the underlying lexer. In line 8, we
register a list of nonterminals using the create DDSL, and between
line 10 and line 20 we extend the grammar by groups of productions
for each nonterminal.

For example, defining the non-terminal body is straightforward:
it’s composed of a list (L1 stands for a list contains at least one
element) of terms separated by commas following “:-”. The {r}
pattern matches against the result, binding the outcome to r.

Lines 14 through 20 demonstrate a stratified parser for Prolog
term expressions. Each group of productions, delimited by “[” and
“]”, shares the same priority and associativity; priority increases
from the top to bottom. The symbol S stands for the nonterminal
itself, so S{x} binds a term to the variable x for use in the parser
action. The _loc expression in line 20 stands for the parser location
data, which is computed for the left-hand-side of the production and
implicitly available to the action on the right hand.

Compared with stand-alone parser generators like ocamlyacc,
Fan’s parser DDSL has some advantages. One benefit is that only
one tool (Fan) is needed, and staging is handled uniformly, so the
build process is streamlined. It is also easy to parameterize the
generated parser, since the parser DDSL generates normal OCaml
toplevel phrases after compile-time expansion. This means that
it works seamlessly with OCaml’s modules and functors. Also,
since type information is available after expansion, IDE support
for inspecting OCaml code’s types also work—for example, the
OCaml type produced by the term is available to the programmer
while interacting with the code.

Embedding a lexer generator Our third example demonstrates
Fan’s lex DDSL, which is useful for custom lexer generation. List-
ing 3 shows how this DDSL can be use to implement a program
that checks well-nesting of OCaml-style comments.

Listing 3. First Class Lexer: Check nested comments
1 #import Fan.Lang.Lex;;
2 let rec token = {:lex|
3 | eof -> exit 0
4 | "\"" -> string lexbuf
5 | "(*" -> comment 0 lexbuf
6 | _ -> token lexbuf |}
7 and string = {:lex|
8 | "\"" -> ()
9 | eof -> failwith "string not finished"

10 | _ -> string lexbuf |}
11 and comment n = {:lex|
12 | "*)" ->
13 if n <> 0 then comment (n-1) lexbuf
14 | eof -> failwith "comment not finished"
15 | _ -> comment n lexbuf |};;

The syntax for the lex DDSL is simple: a lex expression consists
of a sequence of rules, where the left-hand side is a regular ex-
pression (that follows the same conventions as ocamllex), and the
right-hand side is a normal OCaml expression. The lexbuf vari-
able mentioned in line 4 is an implicit parameter that stands for
the current lexing buffer—it also follows the same conventions as
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Figure 2. Nested quotation.

ocamllex. The lex DDSL shares the same advantages of host–
DDSL integration as the parser above, but unlike parser, which
generates top-level OCaml phrases, the lex DDSL generates OCaml
expressions. In some cases, annotating the name of each DDSL is
still too heavyweight in practice, with_stru DDSL is introduced to
set the default name of DDSL for a toplevel phrase(stru), so the
example above could be even simplified as below:

Listing 4. Simplified Lexer
1 #import Fan.Lang.Lex;;
2 {:with_stru|lex:
3 let rec token = {| ... |}
4 and string = {| ... |}
5 and comment n = {| ... |} |};;

Quasiquotation As a final example, we return to the exp quasiquo-
tation DDSL. As we mentioned earlier, Fan provides support for
nested quasiquotation of all of OCaml’s syntactic categories, which
allows programmers to conveniently manipulate OCaml programs
by writing quoted concrete syntax.

Without support for nested quasiquotation, writing metapro-
grams can be extremely cumbersome. For example, Figure 2 shows
the results of two-levels of quotation for the simple expression
3. One level of quotation yields ‘Int(_loc,"3"), which, since
Fan is a homoiconic metaprogramming system, is itself a legal ex-
pression. That small snippet of abstract syntax has a rather larger
quotation—it gets “exploded” as the figure shows. It is much sim-
pler to write {:exp| {:exp|3|} |}.

Quotation alone is not very interesting. Antiquotation allows the
user to quote a piece of program text, but selectively escape el-
ements out of the quotation. Quotation combined with antiquota-
tion, i.e. quasiquotation, provides a very intuitive way to abstract
over code.

Listing 5. Antiquotation
1 let f = function
2 | {:exp| $x + $y |} ->
3 {:exp| $x +. $y |}
4 | x -> x
5

6

7 let f = function
8 | ‘App (_loc,
9 ‘App (_,

10 ‘Id (_,
11 ‘Lid (_,"+")), x),y) ->
12 ‘App (_loc,
13 ‘App (_loc,
14 ‘Id (_loc,
15 ‘Lid (_loc, "+.")), x), y)
16 | x -> x

Listing 5 shows how antiquotation is used in (a slightly artifi-
cial, but small) program transformation. This function transforms
a piece of abstract syntax by rewriting a top-level occurrence of

integer + to floating-point +.. Fan’s antiquotation allows the pat-
tern variables from the OCaml phrase to be spliced into the quoted
syntax. The first version of f clearly demonstrates the benefits of
working with quasiquotation rather than explicit abstract syntax.

These examples give a taste of the kinds of metaprogramming
that are possible with Fan. Other, more sophisticated uses, like
the ability to generically derive boilerplate code are described in
Section 6.2—they are not only useful for bootstrapping Fan itself,
but are also available for general-purpose programming.

3. Design Guidelines
Designing and implementing a compile-time metaprogramming
system that is capable of expressing the kinds of examples shown
above is a nontrivial task, and there are several desirable traits
that are sometimes in tension with one another. Here we identify
Fan’s primary design objectives and discuss some of the tradeoffs
involved.

Transparency, and generality for the user Our first goal is to
make metaprogramming convenient and tractable for both the users
of DDSLs and their developers. This means that quasiquotation
support should be provided for all constructs of the language, and,
moreover, the abstract syntax representation should be as close to
the concrete syntax as possible. For transparency, the user’s tools
(like the IDE) should be able to locally expand a DDSL’s action
on quoted text to obtain compilable, vanilla OCaml without re-
ally compiling the program—this is crucial for debugging metapro-
grams.

Robustness and composability Metaprogramming is a language-
level capability, not a library- or module-level capability. The
means of constructing and manipulating abstract syntax representa-
tions should therefore be globally available and stable in the sense
that local definitions should not perturb the meaning of already-
constructed AST values. Similarly, DDSLs should be isolated from
one another, and composing multiple DDSLs should be possible
and yield predictable behavior.

Maximum availability and minimal dependency The metapro-
gramming system should be independent of the compiler and it
should be possible to separate the “compile-time dependencies,”
i.e. those libraries needed by the implementation of a DDSL, from
the “link-time dependencies,” i.e. those libraries needed to run the
OCaml program generated by using the metaprogramming facili-
ties. Correspondingly, Fan should be distributable as a library (not
as a compiler patch) and it should be possible to remove even the
compile-time dependency on Fan by exporting vanilla OCaml from
Fan source.

Simplicity for the maintainer Implementing a metaprogramming
system involves writing a lot of boilerplate code for extremely large
datatypes that represent abstract syntax, often with multiple vari-
ants (for example with and without source file location informa-
tion). Maintaining such a large program is both tedious and error
prone. The metaprogramming system implementation itself should
therefore be automated as much as possible. In a similar vein, only
a single representation of abstract syntax should be exposed to the
user for both the surface syntax and metaprogramming, and only a
single parser should be used for both the front end and quasiquota-
tion.

Performance Using metaprogramming should not incur signifi-
cant cost in terms of compile-time performance. In particular, the
performance hit should be “pay as you go” in the sense that only
those DDSLs used a program should affect its compilation time.

Some of these goals are synergistic. For example, minimiz-
ing compile-time dependencies and reducing the need for dynamic
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loading improve compilation times significantly. Likewise, simpli-
fying the representation of the abstract syntax streamlines things
for both DDSL implementors and the Fan maintainers. Simplifying
the abstract syntax also enables the automation of boilerplate code
generation, which is used in Fan to derive tens of thousands lines
of code for various purposes, including overloaded quasiquotation,
visitor-patterns, generic maps, fold,s zips, pretty-printing, system-
atic antiquotation support, etc.

On the other hand, making the abstract syntax too simple is at
odds with the desire for transparency, since doing so might obscure
the connection between the concrete syntax and its abstract repre-
sentation. The most delicate component of any metaprogramming
system is therefore the choice of how to represent syntax, since that
design must balance these tradeoffs while achieving all of the goals
outlined above. We turn to this issue next.

4. Design of abstract syntax
Metaprogramming is mainly about writing or manipulating other
programs as data. Though programs can be represented as plain
strings, and indeed there are several widely used textual or token-
based preprocessors, e.g. the C preprocessor [36], it is common
practice to use a hierarchical data structure to encode the abstract
syntax. One of the key differences between different metaprogram-
ming systems is what kind of structured data is adopted for the un-
derlying representation. There are many representation options, in-
cluding: higher-order abstract synax [38], nominally typed [13, 34],
structurally typed or just untyped data structures [8].

4.1 Problems with previously used representations
Common Lisp-style s-expressions have several characteristics that
make them suitable for metaprogramming tasks. Their structure,
consisting only of atoms and anonymous trees of atoms, along with
the lack of semantically meaningful tags makes this representation
very uniform. As a consequence, because most Lisp dialects are
dynamically typed, all the program transformations on the abstract
syntax share the same signature: take in an (untyped) s-expression
to produce another (untyped) s-expression. However, this unifor-
mity is also a drawback: to represent the rich syntax of OCaml
using only s-expressions would require a cumbersome encoding,
which is at odds with the goal of transparency. Also, the lack of
type information makes debugging s-expression-based metapro-
grams much more difficult, since the compiler can’t aid the pro-
grammer in catching missing cases or mis-associated nesting.

Both Template Haskell and Camlp4 adopt algebraic data types
as the basis of their abstract syntax. Compared with s-expressions,
algebraic data types are safer and more precise for symbolic ma-
nipulation. They support type checking, deep pattern matching, and
exhaustiveness checks. The data constructors of an algebraic data
type give each node a distinct meaning, which is helpful for gener-
ating better error messages. Splitting the whole abstract syntax into
different sub-syntactic categories helps to make the metaprograms
more precise: the type signature can tell the meta-programmer
whether a piece of abstract syntax is a pattern, an expression or
type declaration at compile time. However, algebraic data types, as
found in Haskell and OCaml, are defined nominally. Nominal type
systems require explicitly named type declarations, and type equiv-
alence is determined by the name, not by the structure of the type.
Though nominal typing has many legitimate uses—it prevents “ac-
cidental” type equivalences that might be induced by coinciden-
tal sharing of structure—for metaprogrammming, nominal typing
presents several problems.

One difficulty is is that standard implementations of Damas-
Hindley-Milner-style type-inference (as currently used in Haskell
and OCaml) disallow sharing of constructor names among distinct
algebraic data types. This introduces a practical problem when

dividing a large abstract syntax into different subcategories. For
example, as Listing 6 shows, although OCaml expressions and
patterns share much of their concrete syntax, the corresponding
AST nodes (used in Camlp4) are forced to have distinct constructor
names.

Listing 6. Non sharable abstract syntax
1 type pat = (* Pa stands for pattern*)
2 | PaNil of (loc)
3 | PaId of (loc * ident)
4 | PaChr of (loc * string)
5 | PaInt of (loc * string)
6 | ... (* more constructors *)
7

8 type exp = (* Ex stands for expression*)
9 | ExNil of (loc)

10 | ExId of (loc * ident)
11 | ExChr of (loc * string)
12 | ExInt of (loc * string)
13 | ... (* more constructors *)

This naming overhead is leaked to clients of the abstract syntax
as well: all of the functions that work with the abstract syntax have
to be duplicated too. For example, Camlp4 provides functions to
get the location data for each AST node:

Listing 7. Duplicated location functions in Camlp4
1 val loc_of_exp : exp -> loc
2 val loc_of_pat : pat -> loc
3 val loc_of_ctyp : ctyp -> loc
4 (* more syntactic categories ... *)

For every AST operation, a collection of nearly-identical func-
tions, one for each syntactic category, must be implemented. Al-
though we could conceivably automate the generation of such func-
tions4, that still isn’t sufficient to hide the duplication from clients.
Listing 8 gives an example of why this verbosity is necessary—the
code shows typical “smart” constructors that build larger pieces of
syntax out of smaller ones, suitably combining the location data:

Listing 8. Duplicated clients due duplicated location functions
1 let com_exp a b =
2 let loc = Loc.merge
3 (loc_of_exp a) (loc_of_exp b) in
4 Ast.ExCom(loc,a,b)
5 let com_pat a b =
6 let loc = Loc.merge
7 (loc_of_pat a) (loc_of_exp b) in
8 Ast.PaCom(loc,a,b)
9 (* more syntactic categorie ... *)

The issue is that such functions must fix the type of their inputs a
priori. OCaml’s lack of ad-hoc overloading for algebraic datatypes
prevents any chance of code reuse and therefore requires the API
to be polluted with nearly identical functions. Even with ad-hoc
polymorphism support à la Haskell’s type classes [18], the library
maintainer still has to define one typeclass and write each instance
per syntactic category, even though they all behave analogously.

This problem is exacerbated further when we add support for
antiquotation to the abstract syntax. Doing so (see the discussion in
Section 5) requires adding an extra constructor per syntactic cate-
gory, the names of which also cannot be shared. Since it is useful
to have versions of the types both with and without antiquotation
(and, similarly, both with and without source location information),
the proliferation of constructor names is multiplicative.

The redundancy described above caused by nominal typing
discourages the designer from refining a coarse-grained syntactic

4 Or break the abstraction boundary using Obj.magic (like Camlp4)
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category into more precise syntactic categories, yet such refine-
ment is particularly helpful for metaprogramming. For example, in
Camlp4, all of the type-related syntactic categories are lumped to-
gether into one category, i.e. ctyp, which makes type-directed code
generation particularly hard to reason about.

Another problem with using a nominal type to represent the syn-
tax is that the name and constructors of the type should be defined
or imported prior to their use. Listing 9 shows how quotation expan-
sion might introduce a dependency on a (previously unmentioned)
module Ast that defines the abstract syntax type.

Listing 9. Quotation Expander
1 let a = {:exp| 3 + 4 |}
2 (* After meta explosion *)
3 let a =
4 Ast.ExApp
5 (_loc,
6 (Ast.ExApp
7 (_loc,
8 (Ast.ExId
9 (_loc,

10 (Ast.IdLid (_loc, "+")))),
11 (Ast.ExInt (_loc, "3")))),
12 (Ast.ExInt (_loc, "4")))

This need to define the name of the type is inconsistent with the
goal of allowing metaprogramming to be visible at the language
level without introducing any new dependencies. A related problem
is that packaging the abstract syntax type by name creates the
possibility of name capture during quotation expansion. Listing 10
shows that shadowing the Ast module interferes with the semantics
of quasiquotation, since the new module declaration overrides the
previous definition.

Listing 10. Module shadowing changes quotation semantics
1 module Ast = struct
2 (* Rebind the module Ast to shadow the

original Ast module *)
3 end
4 (* Ast refers to the new Ast module now *)
5 let a = {:exp| 3 + 4 |}

Whether such dynamic scoping (or anaphoric macro) is a fea-
ture or bug in metaprogramming is debatable (we discuss issues of
hygiene in section 8), the semantics of quasiquotation for the lan-
guage itself should be consistent—we argue that no such rebinding
should be allowed.

4.2 Structural typing, subtyping and polymorphism
Based on the observations above, Fan adopts polymorphic vari-
ants [17, 28] for representing its abstract syntax.

Polymorphic variants are a good fit for several reasons. Poly-
morphic variants permit deeply nested pattern matching, which is
one of the main benefits of algebraic datatypes. Unlike algebraic
datatypes, however, they also admit structural subtyping, which al-
lows us to refine the syntactic categories of the grammar, yet still
conveniently work with coarser-grained categories when needed.
Importantly, polymorphic variant data constructors can be shared
across type definitions and even manipulated algebraically to form
explicit union types. Moreover, since the data constructors are
global there is no risk that they will be shadowed or otherwise re-
defined, and using them incurs no additional linking dependencies.
Finally, polymorphic functions naturally generalize to all subtypes
of their expected inputs, which allows code to be reused consis-
tently.

Listing 11 shows how sharable constructors (in this case for
literals) and union types makes Fan’s representation much cleaner
than that shown in Listing 6:

Listing 11. Shared type constructors
1 type literal =
2 [ ‘Chr of (loc * string)
3 | ‘Int of (loc * string)
4 | ...]
5 type exp =
6 [ literal
7 | ... (* more data constructors ... *) ]
8 type pat =
9 [ literal

10 | ... (* more data constructors ... *)]

Some of Fan’s syntactic categories are large union types, which
enables sharing of large swaths of boilerplate code. For example,
Listing 12 shows how extracting location data is implemented in
Fan. (In practice loc_of is automatically generated using Fan’s
deriving DDSL; see section 6.2.)

Listing 12. Union types
1 type syntax =
2 [ exp | pat ...]
3 let loc_of (x:syntax) =
4 match x with
5 | ‘Chr(loc,_)
6 | ‘Int(loc,_)
7 | ... -> loc

Here, the union type syntax is the supertype containing all of Fan’s
syntactic categories5.

Structural typing also provides a uniform API for metaprogram-
ming that prevents the proliferation of utility functions across syn-
tact categories. For example, contrast the code in Listing 8 with the
first few lines below:

Listing 13. Polymorphic API
1 let (<+>) a b =
2 Loc.merge (loc_of a) (loc_of b);;
3 let com a b =
4 let _loc = a <+> b in
5 ‘Com(_loc,a,b);;
6 let rec list_of_com x acc =
7 match x with
8 |‘Com(_,x,y) ->
9 list_of_com x (list_of_com y acc)

10 | _ -> x::acc;;
11 let rec com_of_list = function
12 | [] -> failwithf "com_of_list empty"
13 | [t] -> t
14 | t::ts -> com t (com_of_list ts);;

Structural subtyping also opens up the new possibility of selec-
tively reusing part of the host language in a DDSL without losing
type safety. As the lex DDSL (Section 2.2) shows, one common id-
iom for DDSLs is combining part of the host language with some
new features. For a nominal algebraic datatypes, it’s impossible to
use only some of the constructors from the original type definition
without defining a data type for the new syntax and writing em-
bedding/projection functions for transforming the representations
back and forth. In Fan, when introducing a new DDSL, the author
can pick a subset of a specific syntactic category instead. As we
will show later (Section 5), for the quasiquotation DDSL, a smaller
new type ep, which is a subtype of both expressions and patterns,
is chosen for the metaprogramming DDSL.

5 In practice, OCaml’s type checker could infer the type of loc_of without
generating the syntax type
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4.3 Other considerations
Having chosen to use polymorphic variants as the basis for repre-
senting abstract syntax, there are still several design decisions to be
made.

Desugaring considered harmful for syntactic metaprogramming
The first choice is to what what degree the “abstract” syntax re-
flects semantic content versus syntactic content. For compiler writ-
ers, eliminating redundancy present in the syntax both makes the
abstract syntax type more compact and makes subsequent stages
(such as typechecking) easier. It is common practice to de-sugar
different concrete syntax into the same abstract syntax, for ex-
ample, the original OCaml front end translates both let open
Module in exp and Module.(exp) into the same representation
as shown in Listing 14:

Listing 14. Local module desugaring
1 | LET OPEN mod_longident IN seq_exp
2 { mkexp(Pexp_open(mkrhs $3 3, $5)) }
3 | mod_longident DOT LPAREN seq_exp RPAREN
4 { mkexp(Pexp_open(mkrhs $1 1, $4)) }

However, meta-programmers should not be expected to know
or be allowed to rely on this implementation detail. Fan therefore
adopts the philosophy that the abstract syntax should not introduce
a new abstraction layer over the concrete syntax—the abstract
syntax should be isomorphic to the concrete syntax, which accords
with the goal of transparency for the user.

Shared constructors with common conventions Fan also pur-
sues aggressive sharing of constructors across semantically unre-
lated, but syntactically similar categories. For example, the follow-
ing connectives appear in many different contexts of the OCaml
grammar:

Listing 15. Frequently used connectives
1 ‘Com (* a b -> a , b *)
2 ‘Sem (* a b -> a ; b *)
3 ‘Par (* a -> ( a ) *)
4 ‘Sta (* a b -> a * b *)
5 ‘Bar (* a b -> a | b *)
6 ‘And (* a b -> a and b *)
7 ‘Dot (* a b -> a . b *)
8 ‘App (* a b -> a b *)

To enable sharing of code, for example as in the list_of_com
and com_of_list functions shown in Listing 13, such constructors
are expected to conform to some (unenforced) conventions about
their use. For example, every occurrence of ‘Com of (loc *
ty1 * ty2) is expected to follow the convention that ty1 = ty2,
which lets it interact smoothly with the provided generic code for
conversion to and from lists.

Planning for metaprogramming In light of the considerations
above, the Fan abstract syntax representation introduces a total
of (roughly) 170 distinct constructors collected into 53 syntactic
categories, which permits extremely precise typing constraints. For
example, Fan divides the class of OCaml types ctyp (which is just
one category in Camlp4) into 10 different subcategories, so that
metaprograms that want to process OCaml’s types structures (e.g.
for type-directed programming) need not necessarily consider all
of OCaml’s types. The shear number of constructors is manageable
because working with them directly is rare—most of the time you
manipulate the abstract syntax via quotation using familiar OCaml
notation.

There are two further ways in which Fan’s abstract syntax de-
sign supports metaprogramming, both having to do with nested

quasiquotation. First, for antiquotation support, in which it is con-
venient to be able to splice together abstract syntax trees, it is much
cleaner to work with symmetric, tree-structured data rather than
asymmetric, linear data types like OCaml’s built-in lists. That is,
append is simpler to work with “append” than “cons,” largely due
to typing constraints. Consequently, all linear data structures in Fan
are represented in a symmetric way as illustrated in Listing 16, such
design also follows the common conventions we mentioned above:

Listing 16. Symmetric data structure
1 type binding =
2 [‘And of (loc * binding * binding)
3 |‘Bind of (loc * pat * exp)
4 | ant ]

Second, Fan’s abstract syntax tries to minimize the set of lan-
guage constructs used: it is not parametrized by any type variables,
and it doesn’t doesn’t use any parameterized types, it doesn’t use
OCaml’s records, lists, or even option types. It uses recursively-
defined, uniformly structured variant types, and that’s it—such
structural regularity is essential for tractably implementing Fan’s
meta-explosion operations and bootstrapping, which are described
in the next Section.

5. Overloaded quasiquotation
Meta-explosion in Fan To implement quasiquotation, Fan uses
meta-explosion, which lifts a DDSL’s abstract syntax to the meta
level at compile-time, as illustrated in Figure 2. Meta-explosion is
well studied in the untyped setting [42], and the same basic princi-
ple underlies other compile-time metaprogramming systems [12,
22, 34, 41]. In Fan, the meta explosion operations are encapsu-
lated in objects [29], which means that type- and data-constructor-
specific behavior can even be overridden by the user.

Listing 17 shows the (hard-coded) meta-explosion object for the
primitive types—it provides one method per type:

Listing 17. Meta-exploding primitive types.
1 class primitive = object
2 method int _loc i : ep =
3 ‘Int(_loc,string_of_int i)
4 method int32 _loc i : ep =
5 ‘Int32(_loc,Int32.to_string i)
6 (* ... other primitive types *)
7 end

The result of a method like primitive#int could be given
a coarse-grained type like syntax (since the result is indeed valid
OCaml syntax). However, due to Fan’s use of structural typing, it is
possible to introduce an intersection type, ep, which precisely de-
scribes the co-domain of the meta-explosion operations—this pre-
cision makes writing meta-meta-programs (i.e. DDSLs that manip-
ulate meta-programs) much simpler—a fact that is exploited heav-
ily in Fan’s bootstrapping.

For Fan, the co-domain of meta-explosion is a strict subtype of
the intersection of expressions (exp) and patterns (pat), as depicted
in Figure 4. Listing 18 shows the type itself, which has only 18
distinct constructors (including 7 for literal values). This is a
10x reduction in the number of constructors when compared to the
full syntax.

Listing 18. Precise co-domain of meta explosion
1 type ep =
2 [ ‘Id of (loc * ident)
3 | ‘App of (loc * ep * ep)
4 | ‘Vrn of (loc * string)
5 | ‘Com of (loc * ep * ep)
6 | ‘Par of (loc * ep)
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Figure 3. type algebra of abstract syntax

syntax

exp pat

ep

rec_exp

rec_bind

rec_pat

Figure 4. Subtype relation of explosion syntax.

7 | ‘Sem of (loc * ep * ep)
8 | ‘Array of (loc * ep)
9 | ‘Record of (loc * rec_bind)

10 | ‘Any of loc
11 | literal
12 | ant ]
13 and rec_bind =
14 [ ‘RecBind of (loc * ident * ep)
15 | ‘Sem of (loc * rec_bind * rec_bind)
16 | ‘Any of loc
17 | ant ]

Having precisely identified ep as the co-domain of meta-
explosion, we can use the corresponding quotation DDSL to im-
plement meta-explosion for the full syntax, as demonstrated in
listing 19.

Listing 19. Meta explosion for the whole syntax
1 class meta = object(self)
2 inherit primitive
3 method exp _loc x =
4 match x with
5 |#literal y ->
6 self#literal _loc y
7 |‘Id(loc,s) ->
8 {:ep|‘Id
9 ($(self#loc _loc loc),

10 $(self#ident _loc s))|}
11 |‘Vrn (loc,s) ->
12 {:ep|‘Vrn
13 ($(self#loc _loc loc),
14 $(self#string _loc s))|}
15 | ... (* other cases *)
16 (* ... other methods *)
17 end

There are a few additional observations to make. First, the
ep quotation DDSL is itself defined in terms of meta, so in the
initial version of Fan we must implement meta-explosion for the
constructs in Listing 18 by hand—having to do so for only 18
constructors is a big win.

Second, the implementation of the meta object shown above
is so mechanical that it is derived automatically by a DDSL (see
Section 6.2), but that requires support for nested meta-explosion.
However (if we ignore locations for the moment), meta-explosion
has type syntax→ ep. But, since ep is a subtype of syntax, meta-
explosion is chainable, which means explosion composition i.e.
explosion·explosion or explosionn is freely available for nested
quotation.

Finally, the precise co-domain not only makes program trans-
formation on the meta-level abstract syntax easier to handle, but
it also provides a stable API that will not break, even if the un-
derlying language (i.e. OCaml) changes. This is because even if
new features are added to syntax, the co-domain for explosion1
remains the same, so long as we follow Fans conventions about
using polymorphic variants to represent the new constructs.

Systematic antiquotation Support One new wrinkle in the types
described above is the inclusion of the ant type, which contains
a single variant ‘Ant of (loc * anti_cxt) that supports an-
tiquotation in a systematic way. Because the effect of antiquotation
is to “escape” from quotation back to the outer language, its effect
with respect to meta-explosion is (by default) simply to act as the
identity function, as shown in Listing 20.

Listing 20. Antiquotation support
1 class primitive’ = object
2 inherit primitive
3 method ant x = x
4 end

In practice, it is useful to allow custom processing of antiquoted
values, for instance to inject some bit of syntax (like parentheses or
back-ticks) into the abstract syntax. Fan supports this by filtering
away the antiquotation after meta-explosion, but providing hooks
for users to define their own processing. The filter, shown in List-
ing 21, is implemented as an object that inherits a generic visitor of
the syntax and dispatches via the names of the antiquotation syntax
to invoke custom rewriters.

Listing 21. Named Antiquotation support

8 2013/3/29



1 class filter = object
2 inherit FanAst.map
3 method! pat x =
4 match x with
5 |‘Ant(_loc, cxt) -> begin match ...
6 (* project the named antiquotation from

the context *) with
7 |("par",_,e) ->
8 {:pat| ‘Par ($(mloc _loc), $e)|}
9 |("lid",_,e) -> ...

10 end
11 (* override other methods*)
12 end

In this case, the filtering {:exp|$par:a|} would inject parenthe-
ses when expanding the quotation, yielding: ‘Par (_loc, a)

A family of overloaded quasiquotation syntax There are actually
four related versions of Fan’s abstract syntax, each of which is
useful for different purposes, depending on whether antiquotation
support or precise location information is needed. Figure 3 shows
the relationships among the four versions. The richest includes
both precise location information and antiquotation support—it is
the standard representation generated by the parser. Filtering, as
described above strips out the antiquotation nodes; the version with
locations (in the lower left) is what is sent to OCaml’s backend.
The variants without location information are convenient when
programmatically generating abstract syntax, in which case there
is no corresponding source file to draw location data from.

Only the type declarations shown in the bottom right of the
figure are implemented manually; all of the other representations
are derived automatically.

Listing 22. Overloaded quasiquotation
1 #import Fan.Lang.Meta;;
2 {:exp| $a + $b |}
3 (* Expanded code *)
4 ‘App (_loc,
5 (‘App (_loc, (‘Id (_loc, (‘Lid (_loc, "+")))

), a)), b)
6 #import Fan.Lang.Meta.N;;
7 {:exp|$a+$b|}
8 (* Expanded code *)
9 ‘App(‘App(‘Id(‘Lid "+"),a),b)

Essentialy, the quasiquotation DDSL for each syntactic category
α in Fan is composed of three compoents as we described above:
filter#α · meta#α · parseα. The combinations of automatic
derviation for the meta explosion i.e. MetaObj and transformation
between different syntaxes e.g. RemoveType make overloading of
quasiquotation DDSLs(see Section 6.2) automatically derived. The
quasiquotation DDSLs for the different versions of the syntax re-
side in different namespaces, as shown in Listing 22.

6. Implementation
6.1 Architecture
As shown in Figure 1, Fan includes a parser for OCaml6, a desugar-
ing function that desugars Fan’s abstract syntax to OCaml’s internal
representation, an unparsing engine that pretty prints Fan’s abstract
syntax into compilable OCaml code, an untyping engine that con-
verts binary signatures into Fan’s abstract syntax and a collection
of DDSLs.

The workflow is simple: Fan parses the file input, performs the
compile-time expansion, and then desugars Fan’s abstract syntax
into the OCaml compiler’s internal representation. Alternatively,

6 There are some minor differences between the concrete syntax of Fan and
OCaml

Figure 5. Bootstrapping

Fan can unparse and pretty print its abstract syntax to a compilable
source program, removing the dependency on Fan. Fan itself is
distributed this way. Such a simple workflow also results in an
explicit compile-time runtime: explicitly registered DDSLs.

A user’s DDSL can be either statically linked or dynamically
loaded, but DDSL registration does not have any side effects if the
user doesn’t actually use it, nor is there implicit dynamic loading.
Fan does not have cross-stage persistence, but the benefit is that
it does not impose that the code generator for a DDSL depend on
the DDSL’s runtime, which might trigger a dependency chain at
compile time. As a result of Fan’s static characteristics, it works
well with IDE e.g. Emacs(see Section 7).

As Figure 1 shows, without touching the source tree, Fan can
still extract the abstract syntax from the binary interface (i.e. cmi)
file for each compilation unit. Such non-invasive code generation is
quite similar to Template Haskell’s reification. Fan’s reification is
conservative and will not break abstraction boundaries, though.

6.2 Bootstrapping and evolution
Part of the power of Fan lies in its support for self-extensibility via
bootstrapping. Bootstrapping, however, is not just an intellectual
game—it is necessary to keep the code base manageable while
developing more features. Fan’s development history demonstrates
the value of bootstrapping: it grew from a front end with only
an abstract syntax and a parser to a powerful metaprogramming
system that has tens of DDSLs to provide a whole technology stack
for embedding new DDSLs. Fan treats OCaml as a cross platform
assembly language. As Figure 5 shows, after each bootstrapping
cycle, all the features available in the current version go into the
next.

Listing 23. Automation meta explosion
1 {:fans|
2 derive(Map2 Fold2 OIter
3 Map Fold OPrint OEq Print MapWrapper
4 MetaObj RemoveLoc (* more .... *) );|};;
5 {:ocaml| {:include|"src/Ast.mli"|}; |};;

Listing 23 shows how different DDSLs can be composed together
to remove the boilerplate and derive utilities for various purposes.
The fans DDSL accepts the type declarations captured by the ocaml
DDSL and applies different code generators to the captured type
declarations. The include DDSL is simply a C-like include macro,
except that it also checks whether the syntax is correct. Fan has a
deriving framework which makes it very easy to write a customized
type-directed code generators, which we explain next.
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Eq generator The Eq generator derives equality functions for any
datatype expressible in OCaml. Listing 24 shows (a fragment of)
how Fan’s high-level interface is used to write a customized code
generator. The heavy-lifting of name generation and type-structure
analysis is hidden in the function gen_stru, which is parameter-
ized by several call-backs that say how to process various datatypes.
The id argument (line 9) indicates that all generated functions will
be prefixed with eq_, and the arity argument says that equality
takes two inputs. Lines 1 through 7 show how the case of a vari-
ant type is handled, namely by generating code that compares each
field pointwise: the recursive calls to appropriate eq_X function are
combined using &&. Snippets of code representing the results of
those recursive call are given to mk_variant by gen_stru in the
form of a record containing, among other things, the info_exp
field.

Listing 24. Eq generator
1 let mk_variant _cons fields =
2 match fields with
3 | [] -> {:exp|true|}
4 | ls ->
5 List.reduce_left_with
6 ~compose:(fun x y -> {:exp| $x && $y|})
7 ~project:(fun {info_exp=e;_} -> e) ls ;;
8 let gen_eq =
9 gen_stru ~id:(‘Pre "eq_") ~arity:2

10 ~mk_tuple ~mk_record
11 ~mk_variant ~default:{:exp|false|} ();;
12 Typehook.register ("Eq", gen_eq);;

Most customized type-derived code generators e.g. Map2, Fold2
follow this style, and it is available for both Fan and Fan’s users.

RemoveLoc generator RemoveLoc is an ad-hoc code generator
specialized for Fan’s abstract syntax that removes location data
from a datatype. It assumes that the location data has type loc and
that it appears as the first component of the type. This generator
creates the types in the upper half of Figure 3.

Listing 25. Row field transformation
1 {:in_exp| row_field: map_row_field (function
2 | {| $par:x of loc |} -> {| $par:x |}
3 | {| $par:x of (loc * $y ) |}
4 ->
5 begin match y with
6 |{:ctyp| $_ * $_ |} ->
7 {| $vrn:x of $par:y |}
8 | _ -> {| $vrn:x of $y |}
9 end

10 | x -> x)|}

The basic idea is that RemoveLoc traverses the type, using
map_row_field, which is a wrapper for a visitor pattern object
(derived by MapWrapper see listing 23). For each row field, it
pattern matches to see whether there is only a loc field (line 2)
or whether the is loc followed by more types (line 3). In the latter
case, further pattern matching either

The beauty is that row_field is a very small fine-grained type
that only allows row_field appears instead of the whole type
universe. $vrn and $par are named antiquotations which mean
polymorphic variant, parenthesis respectively(section 5). When the
row_field only has one field named loc, we simply discard it as
shown in line 2. Lines 6 through 7 shows when the row_field has
more than two arguments, we parenthesize the rest of fields, and
line 8 is the case that row_field happens to have two fields. One
benefit for the extremely simplified representation of Fan’s abstract
syntax is that during development, it’s particularly easy to get a
code generator working for Fan’s abstract syntax first, and then
generalized to arbitrary datatype in OCaml.

MetaObj generator MetaObj code generator is a bit different
from other type-directed code generator, as shown in listing 19 that
the class that needs to be generated already uses quasiquotation,
to derive the meta explosion, nested quotation and antiquotation
is needed. It’s fairly complicated to implement the MetaObj code
generator since we need to parameterize the meta program, namely
macros which write macros, e.g. the classic once-only macro in
Common Lisp[27]. Listing 26 shows how nested antiquotation is
used in Fan to parameterize the meta program.

Listing 26. Nested antiquotation
1 let mcom x y =
2 {:exp|{:exp| $($x), $($y) |}|};;
3 let mapp x y =
4 {:exp|{:exp| $($x) $($y) |}|};;

To generate the program {:exp| x y|} as an expression and pa-
rameterize it by x and y at the same time, we need both nested
quotation and antiquotation i.e. {:exp|{:exp|$($x)$($y)|}|}
which shares a similar notation as Lisp: ‘‘(,,x ,,y). The same
applies to the definition of mcom. Both mapp and mcom are used
in the implementation of MetaObj code generator. The native sup-
port of nested quotation and antiquotation makes Fan’s macro sys-
tem almost as expressive as Lisp’s quasiquotation. Based on such
utility functions, MetaObj code generator piggybacks on the same
function gen_stru to generate the class meta for each datatype.

7. Discussion
IDE support and transparency Unlike most metaprogramming
systems, compile-time runtime in Fan is totally static and explic-
itly defined when the user uses Fan, combining with the fact that
DDSLs in Fan is always locally delimited, Fan already knows how
to expand the quoted DDSL into Fan’s abstract syntax without com-
piling the program. Besides, Fan has an unparsing engine which
could pretty print Fan’s abstract syntax into compilable program.
This means Fan has a nice API which be made use of by IDE to
expand or collapse the program. This is unlike slime [2], where the
local expansion requires user to load the macros dynamically. One
motivation to make all syntax extensions as DDSLs is to have a
potential support for the IDE. The static property of Fan also helps
get rid of compilation dependency on Fan, with minimum scripting
work on build system, the dependency can be removed. Another
benefit immediately inherited is that this makes debugging gener-
ated program with low level tools, e.g. GDB more smoothly.

Error messages with polymorphic variant When we adopt the
polymorphic variant, the major worries are about the potential hor-
rible error message emitted by the type checker. Luckily, this does
not turn into a big problem in Fan, since most programs around the
abstract syntax are written using the quasiquotation DDSL instead
of written by hand, besides, for each quasiquotation DDSL, for ex-
ample, exp DDSL, we provide an accompanying DDSL exp’ which
adds the type annotation automatically. An interesting discovery is
that we find such type annotation have an obvious impact on the
compilation performance, for example when compiling a module
named AstTypGen, switching from α quasiquotation DDSL into
α′ changes the compilation time from 3s to 1s.

Performance In Fan, a lot of efforts are put into optimize its per-
formance. One major direction is based on the result discovered
above, we generate full type annotations or partial type annotations
when information is not enough. Such type annotation is still op-
tional, though. Fan does not rely on dynamic loading, static link-
ing all DDSLs into native program is available in most platforms,
which could provide better performance. Besides, most of the pro-
gram transformations is locally delimited by DDSL, so if the user

10 2013/3/29



does not use the DDSL, the user does not need to pay for register-
ing different DDSLs. On a machine with 2.7 GHz Intel Core i5„
Memory 4 GB 1333 MHz DDR3, uni-processor, the time to build
a native version of the vanilla Fan(Fan’s source tree after compile
time expansion) takes 28s, while the time to bootstrap Fan using the
vanilla Fan is 28s as well, which means preprocessing using Fan or
not does not incur perceptible compilation performance downgrad-
ing.

Hygienic issues Hygienic is a lovely feature for macros [15],
it could help avoid unintentionally name capture. However, this
presents two challenges we are unclear how to solve so far: first, in-
troducing hygienic macros would impose the dependency on both
the compiler and the runtime where the dependency on runtime is
not actually used but would further cause a dependency chain on
other libraries, if such dependency is figured out by the compiler
itself, such smartness would break the transparency to the user,
the actual compile-time runtime is inferred instead of not explic-
itly specified which may not be a theoretical problem but exists
in practice; second, it presents an engineering challenge to dump
a human editable and compilable program to get rid of compila-
tion dependency on Fan. For example, the program dumped by
-ddump-splices flag in GHC is not guaranteed to compile, it is
barely readable, not alone human editable. From a practical point
of view, the fundamental DDSLs, i.e. quasiquotation DDSL, get
rid of name capture problem by introducing polymorphic variants.
To avoid variables polluting the outside environment, OCaml has
a rich module system to qualify the generated code and in prac-
tice, OCaml’s static type system could detect most unintentionally
shadowing problems. Capturing the outside environment is mostly
recognized as a feature instead of a bug, it provides a chance for
type-specific optimizations of type-directed code generation, for
example, the Opa compiler [4] intentionally shadows the module
Stream to make use of Camlp4’s stream parser’s syntax extension,
and our lex and parser DDSL implicitly brings variable lexbuf and
_loc into scope. With the nice IDE support mentioned above, the
name capture problem is largely mitigated in Fan. However, for a
runtime metaprogramming system, there is only a run-time runtime
and the code can not be inspected actually, hygienic macros is nec-
essary in such case.

Runtime reflection Fan could already silently inject a toplevel
phrase which records the abstract syntax of the compilation unit.
It’s still a type-safe way since the injected phrase is passed to
type checker. The advantage compared with Camlp4 or Template
Haskell is such injection does not impose any linking dependency
on Fan due to structural typing— even the type annotations for
Fan’s abstract syntax will not impose any linking dependency since
Ast.cmi does not contain any code. However, there is one chal-
lenge to be solved in the future, since OCaml’s compilation unit is
composed of two components: the implementation and signature,
without reading the signature file the runtime reflection mechanism
would break the boundary of abstraction, while reading the signa-
ture file per compilation may downgrade the compile performance
as well.

8. Related Work
Metaprogramming has a long history since Lisp was invented [37],
there are a number of meta programming systems in dynamic
programming languages such as Stratego [41], Metaborg [7],
OMeta [43] and Mython [30]. Most of those practical metapro-
gramming systems work on interpreted programming languages,
this is no surprise since the interpreter usually exposes the whole
compiler tool chain in the REPL. In Racket [16], language ex-
tensions are provided as libraries which is the same as Fan [39],

though Racket is designed with metaprogramming in mind while
Fan is built atop OCaml.

Run-time metaprogramming Most runtime metaprogramming
languages are multiple staged, such as MetaML [38], MetaO-
Caml [9], Mint [45] and LMS in Scala [33]. Runtime metapro-
gramming has a more discipled and typeful representation for
abstract syntax [10]. These multi-staged languages exhibit even
stronger properties of type safety: type checked code generator can
not generate ill typed code. However, some use cases can not be
covered by such multi-staged languages, for example, in MetaO-
Caml, only expressions can be generated which excludes some
interesting use cases in Fan. Another difference between run-time
metaprogramming and compile-time metaprogramming is that for
run-time metaprogramming, the staged code cannot be inspected,
which means the domain specific optimizations must be performed
before code generation.

Compile-time metaprogramming C++’s template meta program-
ming is one of the most widely used compile time metaprogram-
ming systems in industry. The compile-time metaprogramming
happens in the type level of C++, which presents a huge concept
gap between the daily programming and template metaprogram-
ming, though C++’s type system is turing complete [40]. Some
use cases of metaprogramming, e.g. compile time specialization,
are less awkward when some new features are added i.e. gen-
eralized constant expression [14]. Fan is directly inspired from
Camlp4 [13], Template Haskell [34].

Template Haskell is designed with a more ambitious goal: a hy-
gienic compile time metaprogramming system with the ability to
type check the quoted code. However, Template Haskell relies on
implicitly dynamically loading at the compile-time, which results
in a significantly slow compilation performance and the depen-
dency on GHCi. More importantly, the implicit dynamically load-
ing makes it hard to work well with IDE. It’s not too hard to trigger
loading tons of packages at the compile-time even for superficial
usage of Template Haskell which may causes some security issues.
We don’t see an easy way to get rid of the compilation dependency
on Template Haskell and the abstract syntax of Template Haskell
does not keep the precise location either. The type checking for the
quoted expression is helpful to catch bugs but it is not too hard
to break it when the user construct the abstract syntax explicitly.
The idea of evolving the metaprogramming system by bootstrap-
ping itself is inherited from Camlp4, however, Camlp4 does not
make use of this feature actively due to its fragile bootstrapping
model and particular slow compilation. Fan takes this step aggres-
sively to evolve itself. Another difference between Camlp4 and Fan
is that Camlp4’s macro system relies on an imperative style syntax
extension heavily, which is not composable. Loading one syntax
extension in Camlp4 have a side effect and the order matters, which
means it’s dangerous to statically linking all the syntax extensions,
therefore Camlp4 still partly relies on dynamic loading. To our best
knowledge, Fan is the first compile-time metaprogramming sys-
tem hosted in a strongly typed programming language which has
adopted structural typing and native support for nested quotations
and antiquotations.
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