Iclea
H A A d s

A calculus, formally

Assume given an infinite set) of variables, denoted by x, y, 2, etc. The set of lambda

terms A is given by
Lambda terms: M,N :=x | (MN) | (\z. M)

The following are some examples of lambda terms:

(Az.z) ((Az. (z2)) (M. (yy))) (A Az (f(fz))))

type rec t =
| Var (string)
| App (t,t)
| Fun (string, t)

Iclea
H A A d s

Where is the compuation happening ?

e (-reduction (function application in an informal sense)

o [3-redex is a term of the form (Az. M)N
o A B-redex reducesto M|N /z]

For example,
(Az. y)((Az. z2)(Aw.w)) —p (Az.y)((Aw. w) Aw. w))
—5 (Az.y)(A\w. w)
—3 Y.
The same term can be reduced differently,
(z.y)((Az22)w.w) =5 v

idea
Confluence of untyped lambda calculus A

e Church-Rosser theorem

If there are reduction sequences from any term A to two different terms B, and B,, then
there exist reduction sequences from those two terms to some common term N.

= B
i \

-

o Result of computation is independent of the evaluation order

e Lanuages can choose different evaluation order, e.g, Haskell, ReScript

Interpreter (natural semantics)

o Evaluate closed term, call by value

Iclea
B9 ZC N

let rec eval = (t: lambda) => {
switch t {

Var(_) => assert false

Fn(_,) =>t

App(f, arg) => {

let Fn(x, body) = eval(f)

let va = eval(arg)

eval(subst(x, va, body)) // substitution explained later

}

Iclea
Eh B s

e Example

Iclea
H A A d s

A formal view of the natural semantics

o Lefttoright
a— a' b — b

ab—a'b vb—vb

e Call by value:

(Az.a) v — alv/x]

e What are values?
o functions

o can we use functions to represent constant numbers, boolean value, etc?

idea

AR R PG
Two Interpreters
Eval using substitution Eval using env map
let rec eval = (t: lambda) => { let eval = (t: lambda) => {
switch t { let richgg ? (e, t) == {
SW1tTC
| Var(_) => assert false | Var(x) => List.assoc(x, e)
I Kn(z% _) =? T . | Fn(>(<, body; => \{/closure(e, X, body)
pptt, arg) == | App(f, arg) =>
let Fn(x, body) = eval(f) {:t Vglosgg?ée'érgs body) = go(e, f)
_ va =)
let va = eval(arg) go(list{(x, va), ...e'}, body)
eval(subst(x, va, body)) it
} }
I3 }
}) go (list{}, t)

Iclea
Eh B s

Two kinds of interpreters

Substitution: eagerly replace the bound variables with the argument

Environment: save the argument and lazily replace the bound variables

Evaluate to the equivalent results

e The former used in optimizations, the latter used in efficient interpreters

For lambda terms M without free variables
evall(M) = Fn(x, N) < eval2(M) = Vclosure(|], z, N)

Primitives

e Definition of boolean

e Boolean values

e |[f-Then-Else

if_then_else T M N —»z M
if_then_else F M N —»3 N

= ATy.x

s

= Azy.y

If _then_else = \z. x

Iclea
Kb B A PO

Iclea
Eh B s

e Church Pair

pair = Axzyz.zx y
fst = Ap.p (A\zy. z)
snd = Ap. p (Azy. y)

10

Church numerals

e The Church numerals 0, 1, 2, ... are defined by

n

e Here are the first few Church numerals:

DN = Ol

ol

Az x
Az fx
Afz. f(fz)

Az f(f(fz))

Iclea
Eh B s

11

Iclea
H A A d s

Constructors

e [so-morphism, used in Coq for number theory, called Peano number

type rec nat = Z | S(nat)
let three = S (S

e Compare with the church numeral: 3 = Afz. f(f(fz))
e There is correspondence between constructors S and Z and bound variables f and x

e Recommended reading: Church encoding and Scott encoding

12

Iclea
Kb B A PO

Arithmetic functions

Anfr. f(nfz)
anmfr.nf(mfz)

SUCC
add

Example
succn = (Anfz. f(nfz))(Afx. fMz)
—g Afz. f(AMfz. fhz) fx)
S5 M. f(f"2)
= Afz. f"z
= n+1

13

Iclea
Eh B s

More primitives

e Test whether a number is zero

iszero = An.n (Az. F) T

o Predecessor (simple version using pair)

pred = An. fst (n (Ap. pair(snd p)(succ(snd p)))(pair 0 0))

14

Pred for church numerals

f = Ap. pair (second p) (succ (second p))
zero = (Af. Ax. x)
pc0 = pair zero zero
pred = An. first (n f pc0)

pred three = first (f (f (f (pair zero zero))))

= first
= first (pair two three)

(
(f
= first (f (f (pair zero one)))
(f (pair one two))
(

= two

Iclea
Eh B s

15

Iclea
Eh B s

How to define multiplication?

Recall that we have n + m, we want to define n X m recursively as
(x) = Anm.if(n = 0)then O else (m + (n — 1) x m)

we replaced ite, iszero, add, pred with syntactic sugar

16

Iclea
H A A d s

Recursive function
Note that (X) is a free variable on the right-hand side. So we rewrite the term
(x) = (Afnm.if(n = 0)then O else (m + f (n — 1) m))(x)

The right-hand side still contains the free variable fact. But we get a closed term, which we
will abbreviate as F/,

F = Xfnm.if(n = 0)thenOelse (m + f (n — 1) m)

now we have

Now what can we do with F'?

17

Iclea
Eh B s

Ilteration method

e First attempt: apply £ with _L
F(L) = Anm.if(n = 0)then 0 else (m + 1)
Far away from what we want. But at least it is correct whenn = (0

o Next attempt: apply F with F'(_L)
F(F(L)) = Anm.if(n =0)then O else (m + F(L) (n — 1) m)
F(L)iscorrectwhenn = 0,so F(F(_L))iscorrectwhenn = Qorn =1

e Actually, F*(_L) correctly calculates n X m forn < 4

e how can we iterate this process?

18

Iclea
Eh B s

Infinite reduction

Consider the following term

Then we define the §2 combinator

which reduces to itself
(Az. zx)(A\z. z2) =5 (Az. 22)(A2. L) —> 35 - - *

e Turing machine can also loop forever

19

Iclea
H A A d s

Y combinator
Y = Af.(Ax. f(zz))(Azx. f(xzx))

20

Iclea
AR R P

Repeatedly applying this equality gives:
YFng(YF) ZBF(F (YF)) :BF(F(YF))

Y F'is also known as a fixed-point of F’

21

Iclea
Eh B s

Y combinator

Then we can define the multiplication function to be
(x) =Y F
where
F = Afnm.if(n = 0)thenOelse (m+ f (n — 1) m)
This is correct, because Y combinator iterates F'(F'(- - -)) infinitely many times
Actually, applying the property Y F' = F (Y F)
(x) = Anm.if(n = 0)then O else (m + (n — 1) X m)

22

Fixed-point

In match, x is a fixed-point of a function f if
z = f(x)
for example, 2 is a fixed point of f(z) = % — 3z + 4

Similarly, the fixed-point of F'is the lambda term X such that
X=FX

Iclea
Eh B s

23

Iclea
H A A d

Memoization

e y-combinator

o Consider the code for calculating fibonacci numbers

let rec fib = n = {
switch n {
| 0 | 1=>1
| _ => fib(n-1) + fib(n-2)
}
}

e rec Tyingthe knot and semantics: fixed recursion

24

https://github.com/bobzhang/y-combinator.git

Memoization

Iclea
AR R S

let memofib = {
let cache = Hashtbl.create(100)
(n) = A

switch Hashtbl.find_opt(cache, n) {

| Some(x) => X

| None => {
let x = fib(n)
Hashtbl.replace(cache, n, x)
X
¥

I3

s
¥

25

Iclea
ESE ZLRgN

Untying the knot

let myfib = (myfib,n)=>{
switch n {
| 0| 1 =1
| _ => myfib(n-1)+myfib(n-2)
¥

}

e Not recursive

e Open recursion

26

Memoization

Iclea
H A A d

let memo = anyFunc => {
let cache = Hashtbl.create(100)
let rec fix = (n) => {
switch Hashtbl.find_opt(cache, n) {
| Some(x) => X
| None => {
let x = anyFunc(fix,n)
Hashtbl.replace(cache, n, x)
X

¥
}
¥
fix
¥

let memofib = memo(myfib)

27

Iclea
Eh B s

Homework

e Implement the substitution function N[v/x] :
subst (N: lambda x: string, v: value) : lambda

e Think about how substitution works on arbitrary terms, i.e. N[M/x] where M could

contain free variables.

o Implement Church numberals and arithmetic functions using lambda calculus

28

