
Reinvent λ calculus by yourself

基础软件理论与实践公开课

张宏波

1



 calculus, formally

Assume given an infinite set  of variables, denoted by , etc. The set of lambda

terms  is given by

The following are some examples of lambda terms:

type rec t =  
    | Var (string) 
    | App (t,t) 
    | Fun (string, t) 

2



Where is the compuation happening ?

-reduction (function application in an informal sense)

-redex is a term of the form 

A -redex reduces to 

For example,

The same term can be reduced differently,

3



Confluence of untyped lambda calculus

Church-Rosser theorem

If there are reduction sequences from any term A to two different terms B₁ and B₂, then
there exist reduction sequences from those two terms to some common term N.

Result of computation is independent of the evaluation order

Lanuages can choose different evaluation order, e.g, Haskell, ReScript

4



Interpreter (natural semantics)

Evaluate closed term, call by value

let rec eval = (t: lambda) => { 
  switch t { 
  | Var(_) => assert false 
  | Fn(_, _) => t 
  | App(f, arg) => { 
    let Fn(x, body) = eval(f) 
    let va = eval(arg) 
    eval(subst(x, va, body)) // substitution explained later 
    } 
  } 
} 

5



A formal view of the natural semantics

Call by value:

Left to right

What are values?

functions

can we use functions to represent constant numbers, boolean value, etc?

6



Two Interpreters

Eval using substitution

let rec eval = (t: lambda) => { 
  switch t { 
  | Var(_) => assert false 
  | Fn(_, _) => t 
  | App(f, arg) => { 
    let Fn(x, body) = eval(f) 
    let va = eval(arg) 
    eval(subst(x, va, body)) 
    } 
  } 
} 

Eval using env map

let eval = (t: lambda) => { 
  let rec go = (e, t) => { 
    switch t { 
    | Var(x) => List.assoc(x, e) 
    | Fn(x, body) => Vclosure(e, x, body) 
    | App(f, arg) => { 
      let Vclosure(e', x, body) = go(e, f)
      let va = go(e, arg) 
      go(list{(x, va), ...e'}, body) 
      } 
    } 
  } 
  go (list{}, t) 
} 

7



Two kinds of interpreters

Substitution: eagerly replace the bound variables with the argument

Environment: save the argument and lazily replace the bound variables

Evaluate to the equivalent results

For lambda terms  without free variables

8



Primitives

Definition of boolean

Boolean values

If-Then-Else

9



Church numerals

The Church numerals , , , ... are defined by

Here are the first few Church numerals:

10



Constructors

Iso-morphism, used in Coq for number theory, called Peano number

type rec nat = Z | S(nat) 
let three = S (S (S Z)) 

Compare with the church numeral: 

There is correspondence between constructors  and  and bound variables  and 

Recommended reading: Church encoding and Scott encoding

11



Arithmetic functions

Example

12



More primitives

Test whether a number is zero

Pair

Predecessor (simple version using pair)

13



Pred for church numerals

14



How to define multiplication?

Recall that we have , we want to define  recursively as

we replaced , , ,  with syntactic sugar

15



Recursive function

Note that  is a free variable on the right-hand side. So we rewrite the term

The right-hand side still contains the free variable . But we get a closed term, which we

will abbreviate as ,

now we have

Now what can we do with ?

16



Iteration method

First attempt: apply  with 

Far away from what we want. But at least it is correct when 

Next attempt: apply  with 

 is correct when , so  is correct when  or 

Actually,  correctly calculates  for 

how can we iterate this process?

17



Infinite reduction

Consider the following term

Then we define the  combinator

which reduces to itself

Turing machine can also loop forever

18



Y combinator

The Y combinator is defined as

Repeatedly applying this equality gives:

 is also known as a fixed-point of 

19



Y combinator

Then we can define the multiplication function to be

where

This is correct, because  combinator iterates  infinitely many times

Actually, applying the property 

20



Fixed-point

In match,  is a fixed-point of a function  if

for example, 2 is a fixed point of 

Similarly, the fixed-point of  is the lambda term  such that

21



Memoization

y-combinator

Consider the code for calculating fibonacci numbers

let rec fib = n => { 
  switch n { 
  | 0 | 1 => 1 
  | _ => fib(n-1) + fib(n-2) 
  } 
} 

Tying the knot

22

https://github.com/bobzhang/y-combinator.git


Memoization

let memofib = { 
  let cache = Hashtbl.create(100) 
  (n) => { 
    switch Hashtbl.find_opt(cache, n) { 
    | Some(x) => x 
    | None => { 
      let x = fib(n) 
      Hashtbl.replace(cache, n, x) 
      x 
      } 
    } 
  } 
} 

23



Untying the knot

let myfib = (myfib,n)=>{ 
  switch n { 
  | 0 | 1 => 1 
  | _ => myfib(n-1)+myfib(n-2) 
  } 
} 

not recursive

open recursion

24



Memoization

let memo  = anyFunc => { 
  let cache = Hashtbl.create(100) 
  let rec fix = (n) => { 
    switch Hashtbl.find_opt(cache, n) { 
    | Some(x) => x 
    | None => { 
      let x = anyFunc(fix,n) 
      Hashtbl.replace(cache, n, x) 
      x 
      } 
    } 
  } 
  fix 
} 
let memofib = memo(myfib)

25



Homework

Implement the substitution function N[v/x] :

subst (N: lambda x: string, v: value) : lambda

Think about how substitution works on arbitrary terms, i.e. N[M/x]  where M  could

contain free variables.

Implement Church numberals and arithmetic functions using lambda calculus

26


