
语义分析与类型(Part3)

基础软件理论与实践公开课

ZhangYu

1

Introduction

Previous class:

Type checking

Monomorphic type inference
Type variable

Unification (functional and imperative)

Today's class:

Polymorphic type inference
Type scheme

Generalization and instantiation

2

Let-polymorphism

Why do we need let-polymorphism

A sweet spot in the trade-off between powerful polymorphism and simplicity

Polymorphism: code re-use

Simplicity: decidable and practical

How do we achieve an efficient implementation of let-polymorphism

3

Tiny language with types

Types

type rec typ = TInt | TBool | TVar(ref<tvar>) | TArr(typ, typ)
and tvar = Nolink(string) | Linkto(typ)

Expressions

type rec expr = CstI(int) | CstB(bool) | Var(string)
 | If(expr, expr, expr)
 | Fun(string, expr) | App(expr, expr)
 | Let(string, expr, expr)

How do we infer the type of let

4

Review

Monomorphic type inference

where in

Note means unification on and

5

Review

6

Let-polymorphism

Consider this example:

let id = fun x -> x in // infer id has type T -> T
let a = id 42 in // unify T with Int
let b = id true in // unify T with Bool
...

Problem:

To achieve code reuse, we need to assign a polymorphic type to id

7

Type scheme

Type scheme, written as

Restrictions

Predicative: the quantified type variable in cannot be a type scheme

Rank-1 (prenex): type scheme cannot appear on the left-hand sides of arrows

 is rank-2

Note the difference between

quantified type variables:

free type variables (unification variables):

8

Intuition

To run type inference on let x = t_1 in t_2

1. Infer the type of t_1 : T_1 , where unification has been applied whenever possible

2. Generalize the free type variables remaining in T_1

for example, if T_1 = X -> X , we get the type scheme forall X. X -> X

3. Extend the typing environment to record the type scheme for x

4. Each time we encounter an occurence of x in t_2 , the type scheme is instantiated

for example, forall X. X -> X is instantiated to X_1 -> X_1

for another occurence, it is instantiated to X_2 -> X_2

9

Unsound generalization

Consider the example:

let h = fun f -> let g = f in g(42)
in h (true)

is supposed to give a type error

Expected type for h : forall X. (Int -> X) -> X

Acutal type for h : forall X Y. X -> Y

10

Unsound generalization

Consider the simplified example

fun x -> let y = x in y

Expected type: forall X. X -> X

Actual type: forall X Y. X -> Y

The solution is not to generalize type variables in T_1 that are also mentioned in the
typing environment

11

Typing rule

Generalization

Instantiation

12

Implementation

Type scheme

type rec typ = TInt | TBool | TArr(typ, typ) | TVar(ref<tvar>)
 | QVar(string) // quantified type variable
and tvar = Nolink(string) | Linkto(typ)

For example:

forall X. X -> X is represented as TArr(QVar(X), QVar(X))

X_1 -> X_1 is represented as TArr(TVar(X_1), TVar(X_1))

Note:

This only works for rank-1 polymorphism

QVar cannot be used for unification
13

Implementation

syntax directed

let inst = (ty: typ): typ => { ... }
let gen = (ty: typ, ctx: ctx): typ => { ... }
let rec check_expr = (ctx: ctx, expr: expr): typ => {
 | ...
 | Var(x) => inst(lookup(x, ctx))
 | Let(x, t1, t2) => {
 let ty1 = check_expr(ctx, e1)
 let ctx' = list{ (x, gen(ty1, ctx)), ...ctx }
 let ty2 = check_expr(ctx', e2)
 t2
 }
}

14

Instantiate

instantiate replaces QVar(...) with fresh TVar(Nolink(...))

let inst = (ty: typ): typ => { ... }

For example, QVar(X) -> QVar(Y) -> QVar(X)
is instantiated to TVar(X_1) -> TVar(Y_1) -> TVar(X_1)

Straightforward implementation by maintaining a map for substitution

15

Generalize

generalize replaces TVar(Nolink(...)) with QVar(...) depend on the typing

context

let free_vars_in_ctx(ctx): list<string> => { ... }
let gen = (ty: typ, ctx: ctx): typ => {
 let free_vars = free_vars_in_ctx(ctx)
 let rec go = (ty: typ, subst): (typ, subst) => { ... }
 fst(go(ty, list{}))
}

Inefficient to calculate the free type variables repeatedly

16

Level-based approach

When checking let x = t_1 in ... , suppose we have t_1 : T_1

Question: how to tell whether a tvar in T_1 is a free variable in the typing context

Observation: a tvar appears free in the type context if it is created before typing let

Key idea:

classify type variables according to where they are created

use level to track where the tvar is created

17

Level-based approach

Key idea:

classify type variables according to where they are created

use level to track where the tvar is created

For example,

18

Level-based approach

Key idea:

classify type variables according to where they are created

use level to track where the tvar is created

For another example,

The inferred type is: forall X Y. X -> Y -> X
19

Example

// expected [h: forall X. (Int -> X) -> X]
let h = fun f -> let g = f in g(42) in h (true)

typing let h = ... in h (true)
// level = 1
1. typing fun f -> let g = f in g(42)
 1.1 create tvar
 1.2 typing let g = f in g(42)
 // level = 2
 1.2.1 typing f
 // level = 1
 1.2.2 generalize
 1.2.3 typing g(42)
// level = 0
2. generalize
3. typing h(true) -- type error

20

Implementation

Note the int in type variable

type rec typ = TInt | TBool | TArr(typ, typ)
 | TVar(ref<tvar>) | QVar(string)
and tvar = Nolink(string * int) | Linkto(typ)

To keep track of where the new type variable is created

let new_tvar = (level: int): typ => {
 let name = fresh_name()
 TVar(ref(Nolink(name, level)))
}

21

Implementation

Level manipulation

let rec check_expr = (ctx, expr, level: int): typ => {
 switch expr {
 | Let(x, t1, t2) => {
 let ty1 = check_expr(ctx, e1, level + 1) // increase level
 let ctx' = list{(x, gen(ty1, level)), ...ctx}
 let ty2 = check_expr(ctx', e2, level) // restore level
 ty2
 }
 | ...
 }
}

22

Implementation

Generalization: compare levels

let gen = (ty: typ, level: int): typ => {
 ...
 | TVar(link) => {
 match !link with
 | Nolink(name, ty_level) when ty_level > level {
 ...
 }
 }
}

Instantiation
need the current level to create new tvar

let inst = (ty: typ, level: int): typ => { ... }

23

Implementation

Unification
equating two types

occur check

adjust the level of tvar

For example,

unify ty1 = TVar(X_1,1) with ty2 = TVar(Y_1,2)

result: ty1 = TVar(ty2) and ty2 = TVar(Y_1, 1)

unify ty1 = TVar(X_1, 2) with ty2 = TArr(TVar(Y_1, 1), TVar(Z_1, 3))

result: ty1 = TVar(ty2) and ty2 = TArr(TVar(Y_1, 1), TVar(Z_1, 2))

24

Implementation

Unification
equating two types

occur check

adjust the level of tvar

let prune_level (level: int, ty: typ) => { ... }
let rec unify = (t1: typ, t2: typ): unit => {
 switch (t1', t2') { // path compression omitted
 | (TVar(tvar), t) | (t, TVar(tvar)) =>
 assert !(occurs(tvar, t)) // error report
 prune_level(level_of(tvar), t) // adjust level in type t
 tvar := Linkto(t)
 | ...
 }
}

25

Value restriction

let x = ref (fun x -> x) in
x := fun x -> x + 1;
!x true

Unsound if we generalize the type of x to forall X. Ref(X -> X)

Only generalize when the right hand side is syntactically a value

26

Let-polymorphism

Strength

decidable: no annotation required

efficient: almost linear

Weakness

complex interaction with subtype, etc.

unfriendly error messages

hard to generalize to more expressive type systems

27

Homework

Complete the implementation for let-polymorphism

Think about how to handle recursive functions
Note that we don't allow polymorphic recursive, i.e. something like

let rec f = fun x ->
 if true then 22
 else f 7 + f false
in ...

28

Recommonded reading and references

[1] Efficient and insightful generalization

[2] Section 6 in Programming Language Concepts

29

https://okmij.org/ftp/ML/generalization.html
https://www.itu.dk/people/sestoft/plc/

