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Recap

We will use the language from Lec 2:

type rec expr =
  Cst(int) 
| Prim(p, list<expr>) 
| Let(string, expr, expr)
| Var(string) 
| Fn(list<string>, expr) 
| App(expr, expr)

type rec lambda =
  Var(string) 
| Fn(string, lambda) 
| App(lambda, lambda)
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Introduction

We have shown the compilation for C-like functions

no nested functions

no free variables: neither local variables nor parameters of the function

each function can be simply represented as a function pointer

use the call  instruction to jump to the label for the function

Goal: compile first-class functions to C-like functions
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Introduction

Considering compiling the following code:

let make_adder(x) =
  let inner_func(y) = x + y in
  inner_func

let add2 = make_adder(2) in
add2(3)                       // supposed to return 2+3=5

Functions can be used as return value

Inner function may capture variables, such as x

which means, local defined function may have longer lifetime than its parent

inner_func  lives longer than make_adder

but inner_func  refer to the binding x  defined in make_adder
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Introduction

Can we directly flatten the functions?

let inner_func(y) = x + y         // where is x?????

let make_adder(x) = inner_func

inner_func  accesses to a free variable!

To deal with this situation, we need closure conversion.
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Intuition

Recap:

We used closures to implement the interpreter for first-class functions
A function pointer and an environment (for interpreting free variables)

Interpreters create closures in the host language

Compilers make the closures explicit in the compiled program

Intuition:

Using closures to transform the program with first-class functions to C-like functions
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Intuition

We first use closures to eliminate free variable x

let make_adder(x) =
  let inner_func(y) = x + y in
  inner_func

let add2 = make_adder(2) in
add2(3)

To make inner_func  closed, we introduce an environment as an extra parameter

let make_adder(x) =
  let inner_func(env, y) = env.x + y in  // note the extra parameter env
  (inner_func, new_env({ x := x })       // return the closure

let add2 = make_adder(2) in
add2(3)                                  // program breaks here
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Intuition

The closure creation and application should conform to a protocol

let make_adder(x) =
  let inner_func(env, y) = env.x + y in
  (inner_func, new_env({ x := x }))      // closure creation

let add2_clo = make_adder(2) in
let (add2_func, add2_env) = add2_clo in  // decompose the closure
add2_func(add2_env, 3)                   // pass the env to the function 

Now the program should work
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Intuition

Finally, we can lift the nested function to toplevel (aka hoisting).

Example:

let inner_func(env, y) = env.x + y
let make_adder(x) = (inner_func, new_env({x := x}))

let add2_clo = make_adder(2) in
let (add2_func, add2_env) = add2_clo in
add2_func(add2_env, 3)

Nice! Now we can proceed with the compilation scheme from Lec 4.
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Summary

Remove free variables by closures conversion

Closure creation

Closure application

Hoist the functions to top level
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Formalization

Recap: by studying lambda calculus, we can focus on the most essential part

We can transform our program to lambda calculus, for example:
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Formalization: free variables

The set of free variables can be inductively defined as follows:

For example,
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Formalization: representation of closures

Closure is represented as a tuple that contains:

function pointer

captured variables.

where  are the free variables in the function f .

Note there are different ways to represent the closures
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Formalization: closure conversion

Finally, we show the inductive definition of closure conversion:

where  is the original function parameter, and .

Note the conversion is closely related to the closure representation
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Discussion

For another example,

let map(f, xs) =
  let go(xs) = match xs with
  | [] -> [] | x :: xs -> f(x) :: go(xs)
  in go(xs)
in 
let scale(k, xs) =
  map (fun x -> k * x) xs
in scale(2, [1,2,3])

We can transform fun x -> k * x  to a closure

But how about the recursive function go ?
and how do we compile the call f(x)  where f  is a variable?

and ...
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Problems to think about

How to free the allocated closures?

How to identify function calls which don't need to be transformed?

How to handle recursive function?

Indirect call
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Q&A
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