
闭包的表示与编译(Part1)

基础软件理论与实践公开课

ZhangYu

1

Roadmap

2

Contents

Intuition behind closure conversion

Formalization using lambda calculus

Discussion

3

Recap

We will use the language from Lec 2:

type rec expr =
 Cst(int)
| Prim(p, list<expr>)
| Let(string, expr, expr)
| Var(string)
| Fn(list<string>, expr)
| App(expr, expr)

type rec lambda =
 Var(string)
| Fn(string, lambda)
| App(lambda, lambda)

4

Introduction

We have shown the compilation for C-like functions

no nested functions

no free variables: neither local variables nor parameters of the function

each function can be simply represented as a function pointer

use the call instruction to jump to the label for the function

Goal: compile first-class functions to C-like functions

5

Introduction

Considering compiling the following code:

let make_adder(x) =
 let inner_func(y) = x + y in
 inner_func

let add2 = make_adder(2) in
add2(3) // supposed to return 2+3=5

Functions can be used as return value

Inner function may capture variables, such as x

which means, local defined function may have longer lifetime than its parent

inner_func lives longer than make_adder

but inner_func refer to the binding x defined in make_adder
6

Introduction

Can we directly flatten the functions?

let inner_func(y) = x + y // where is x?????

let make_adder(x) = inner_func

inner_func accesses to a free variable!

To deal with this situation, we need closure conversion.

7

Intuition

Recap:

We used closures to implement the interpreter for first-class functions
A function pointer and an environment (for interpreting free variables)

Interpreters create closures in the host language

Compilers make the closures explicit in the compiled program

Intuition:

Using closures to transform the program with first-class functions to C-like functions

8

Intuition

We first use closures to eliminate free variable x

let make_adder(x) =
 let inner_func(y) = x + y in
 inner_func

let add2 = make_adder(2) in
add2(3)

To make inner_func closed, we introduce an environment as an extra parameter

let make_adder(x) =
 let inner_func(env, y) = env.x + y in // note the extra parameter env
 (inner_func, new_env({ x := x }) // return the closure

let add2 = make_adder(2) in
add2(3) // program breaks here

9

Intuition

The closure creation and application should conform to a protocol

let make_adder(x) =
 let inner_func(env, y) = env.x + y in
 (inner_func, new_env({ x := x })) // closure creation

let add2_clo = make_adder(2) in
let (add2_func, add2_env) = add2_clo in // decompose the closure
add2_func(add2_env, 3) // pass the env to the function

Now the program should work

10

Intuition

Finally, we can lift the nested function to toplevel (aka hoisting).

Example:

let inner_func(env, y) = env.x + y
let make_adder(x) = (inner_func, new_env({x := x}))

let add2_clo = make_adder(2) in
let (add2_func, add2_env) = add2_clo in
add2_func(add2_env, 3)

Nice! Now we can proceed with the compilation scheme from Lec 4.

11

Summary

Remove free variables by closures conversion

Closure creation

Closure application

Hoist the functions to top level

12

Formalization

Recap: by studying lambda calculus, we can focus on the most essential part

We can transform our program to lambda calculus, for example:

13

Formalization: free variables

The set of free variables can be inductively defined as follows:

For example,

14

Formalization: representation of closures

Closure is represented as a tuple that contains:

function pointer

captured variables.

where are the free variables in the function f .

Note there are different ways to represent the closures

15

Formalization: closure conversion

Finally, we show the inductive definition of closure conversion:

where is the original function parameter, and .

Note the conversion is closely related to the closure representation

16

Discussion

For another example,

let map(f, xs) =
 let go(xs) = match xs with
 | [] -> [] | x :: xs -> f(x) :: go(xs)
 in go(xs)
in
let scale(k, xs) =
 map (fun x -> k * x) xs
in scale(2, [1,2,3])

We can transform fun x -> k * x to a closure

But how about the recursive function go ?
and how do we compile the call f(x) where f is a variable?

and ...
17

Problems to think about

How to free the allocated closures?

How to identify function calls which don't need to be transformed?

How to handle recursive function?

Indirect call

18

Q&A

19

