Iclea
FRk B

F BrRTS dWi¥(Partl)

BRI S TR A IR

ZhangYu

Roadmap

Theory st udy

type rec lambda =
Var(string)

| Fn(string, lambda)

| App(lambda, lambda)

{

STLC

{

System F

NthQVellanguage

type rec expr =

| machineg instruction

Cst(int) COMP'IQ itype instr =
| Add(expr, expr) | Cst(int) | Add | Mul
| Mul(expr, expr) |
I
\M/ comPlle_ : type instr =

local VOsria\B[e,s —% de Br‘uun ndex

V

C-s‘tyle functions COMP;IQ >
Pirst-class Punctions [Closure Conversion}
Type system

...
:EE’I Var(int) | Pop | Swap

Itype instr = ...

| Label(1l)
|| Call(l,n) | Ret(n)
I| Goto(l) | IfZero(l)

Iclea
AR R PG

Iclea
Eh B s

Contents

e Intuition behind closure conversion
e Formalization using lambda calculus

e Discussion

Recap

We will use the language from Lec 2:

type rec expr =
Cst(int)

Prim(p, list<expr>)
Let(string, expr, expr)
Var(string)
Fn(list<string>, expr)
App(expr, expr)

type rec lambda =
Var(string)

| Fn(string, lambda)

| App(lambda, lambda)

Iclea
Eh B s

Iclea
H A A d s

Introduction

e \We have shown the compilation for C-like functions

o no nested functions
o no free variables: neither local variables nor parameters of the function
o each function can be simply represented as a function pointer

o usethe call instruction to jump to the label for the function

e Goal: compile first-class functions to C-like functions

. idea
Introduction PP

Considering compiling the following code:

let make adder(x) =
let inner_func(y) = x + y in
inner_func

let add2 = make _adder(2) in
add2(3) // supposed to return 2+3=5

e Functions can be used as return value

e [nner function may capture variables, such as x
which means, local defined function may have longer lifetime than its parent

e inner_func liveslongerthan make_adder

e but inner_func referto the binding x definedin make_adder

Iclea
Eh B s

Introduction

Can we directly flatten the functions?

let inner_func(y) = x + vy // where is x?7?77

let make_adder(x) inner_func

inner_func accesses to a free variable!

To deal with this situation, we need closure conversion.

Iclea
H A A d s

Intuition

Recap:

o We used closures to implement the interpreter for first-class functions
o A function pointer and an environment (for interpreting free variables)

o |nterpreters create closures in the host language

o Compilers make the closures explicit in the compiled program
Intuition:

e Using closures to transform the program with first-class functions to C-like functions

. idea
Intuition S B

We first use closures to eliminate free variable x

let make adder(x) =
let inner_func(y) = x + y in
inner_func

let add2 = make _adder(2) in
add2(3)

Tomake inner_func closed, we introduce an environment as an extra parameter

let make adder(x) =
let inner_func(env, vy) env.X + y in // note the extra parameter env
(inner_func, new_env({ x := x }) // return the closure

let add2 = make _adder(2) in
add2(3) // program breaks here

idea

Eh B s
Intuition
The closure creation and application should conform to a protocol
let make adder(x) =
let inner_func(env, y) = env.x + y in
(inner_func, new _env({ x := x })) // closure creation
let add2 _clo = make_adder(2) in
let (add2_func, add2_env) = add2_clo in // decompose the closure
add2_func(add2_env, 3) // pass the env to the function

Now the program should work

10

Iclea
Eh B s

Intuition

Finally, we can lift the nested function to toplevel (aka hoisting).

Example:

let inner_func(env, y) = env.x + vy
let make_adder(x) = (inner_func, new _env({x := x}))

let add2 _clo = make_adder(2) in
let (add2_func, add2_env) = add2 clo in
add2_func(add2_env, 3)

Nice! Now we can proceed with the compilation scheme from Lec 4.

11

Iclea
AR R PG

Summary

e Remove free variables by closures conversion

o Closure creation

o Closure application

e Hoist the functions to top level

12

Iclea
Eh B s

Formalization

Recap: by studying lambda calculus, we can focus on the most essential part

We can transform our program to lambda calculus, for example:

let f(z) =a in b transforms to let f=Az.a in b
let £ =¢ in b transforms to (Az.b) e

13

Iclea
Kb B A PO

Formalization: free variables

The set of free variables can be inductively defined as follows:

tv(z) = {z}
fv(el 62) — fv(el) U fV(eg)
fv(dz.e) = fv(e) \ {z}

For example,

fv(dez.y+) = {y}

14

Iclea
Eh B s

Formalization: representation of closures

Closure is represented as a tuple that contains:

e function pointer
e captured variables.

closure = (f, (z1,...,x,))
where x; are the free variables in the function f .

Note there are different ways to represent the closures

15

Iclea
H A A d s

Formalization: closure conversion

Finally, we show the inductive definition of closure conversion:
[z] =«
[Az.t] =1et f= A, (z1,...,2,)). [t] in
(@1, -y 20)
[t1 ta] = 1et clo = [t1] in
let f = fst(clo) in
let env = snd(clo) in

f ([t2], env)

where z is the original function parameter,and {x1, ..., z,} = fv(Azx. t).
Note the conversion is closely related to the closure representation

16

Discussion

For another example,

let map(f, xs) =
let go(xs) = match xs with
| [1 —> []1 | x it xs —> f(x) :: go(xs)
in go(xs)
in
let scale(k, xs) =
map (fun x —> k * x) xs
in scale(2, [1,2,3])

We can transform fun x —> k x x to aclosure
But how about the recursive function go ?

and how do we compile the call f(x) where f isavariable?

and ...

Iclea
Eh B s

17

Iclea
H A A d s

Problems to think about

e How to free the allocated closures?
e How to identify function calls which don't need to be transformed?
e How to handle recursive function?

e Indirect call

18

Iclea
Eh B s

Q&A

19

